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Introduction  

In the study and design of control systems, 

consideration of dynamical system stability is 

crucial. It is simple to confirm the stability of 

equilibria for linear systems. It is more difficult to 

demonstrate the stability of nonlinear system 

equilibria for nonlinear dynamical systems than it 

is for linear systems. The stability may be assessed 

using the Lyapunov function at the equilibrium. 

The fundamental issue is how to determine the 

Lyapunov function at equilibrium for an 

autonomous polynomial system of differential 

equations. The Lyapunov function computation 

problem was changed into a quantifier elimination 

problem in [1, 2]. The method's drawback is that it 

has a computation complexity for quantifier 

elimination that is twice as complicated as the total 

number of variables. She et al[3] .'s symbolic 

solution to this issue first builds a specific 

semialgebraic system utilizing the local features of 

a Lyapunov function and its derivative, then uses 

CAD, a technique initially proposed by Collins in 

[4], to solve these inequalities. Semidefinite 

programming is used in the approach in [5] to look 

for the Lyapunov function. There are other 

algorithms as well. 

In this study, we assume that the Lyapunov 

function has a quadratic shape and that certain of 

its coefficients are unknowable. Using the method 

described in [3], a few positive polynomials are 

first created, and then a positive dimensional 

polynomial system is built by including a few extra 

variables. By utilizing a numerical approach to 

solve the real root of the positive dimensional 

system, the parameter in the Lyapunov function is 

calculated. 

The rest of this paper is organized as follows: 

Definitions and preliminaries about the Lyapunov 

function and the asymptotic stability analysis of 

differential system are given in Section 2. Section 3 

reviews some methods for solving the real root of 

positive dimensional polynomial system.The new 

algorithm to compute the Lyapunov function and  

 

some experiments are shown in Section 4. In 

Section 5, some examples are given to illustrates 

the efficiency of our algorithm. Finally, Section 6 

draws a conclusion of this paper. 

Stability Analysis of Differential Equations 

 In this section, some preliminaries on the stability 

analysis of differential equations are presented. 

In this paper, we consider the following differential 

equations: 

 

 

In general, there exists two techniques to analyze 

the stability of an equilibrium: the Lyapunov’s first 

method with the technique of linearization which 

considers the eigenvalues of the Jacobian matrix at 

equilibrium. 
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Theorem 1. Let 𝐽𝐹(x) denote the Jacobian matrix of 

system {𝑓1,...,} at point x. If all the eigenvalues of 

𝐽𝐹(x) have negative real parts, then x is 

asymptotically stable. If the matrix 𝐽𝐹(x) has at 

least one eigenvalue with positive real part, then x 

is unstable. 

For a small system, it is easy to obtain the 

eigenvalues of the matrix 𝐽𝐹(x); then one can 

analyze the stability of the equilibrium 

usingTheorem 1. For a high-dimensional system, 

solving the characteristic polynomial to get the 

exact zeros is a difficult problem. Indeed, to answer 

the question on stability of an equilibrium, we only 

need to know whether all the eigenvalues have 

negative real parts or not. Therefore, the theorem of 

Routh-Hurwitz [8] serves to determine whether all 

the roots of a polynomial have negative real parts.  

Another method to determine asymptotic stability 

is to check if there exists a Lyapunov function at 

the point x, which is defined in the following. 

Definition 2. Given a differential system and a 

neighborhood U of the equilibrium, a Lyapunov 

function with respect to the differential system is a 

continuously differential function  : U → R such 

that 

 

Solving the Real Roots of Positive Dimensional 

Polynomial System 

Solving polynomial system has been one of the 

central topics in computer algebra. It is required 

and used in many scientific and engineering 

applications. Indeed, we only care about the real 

roots of a polynomial system arising from many 

practical problems. For zero dimensional system, 

homotopy continuation method [9, 10] is a global 

convergence algorithm. For positive dimensional 

system, computing real roots of this system is a 

difficult and extremely important problem. 

Due to the importance of this problem, many 

approaches have been proposed. The most popular 

algorithm which solves this problem is CAD; 

another is the so-called critical point methods, such 

as Seidenberg’s approach of computing critical 

points of the distance function [11]. The algorithm 

in [12] uses the idea of Seidenberg to compute the 

real root of a positive dimensional defined by a 

signal polynomial; and extends it to a random 

polynomial system in [13]. Actually, these 

algorithms depend on symbolic computations, so 

they are restricted to small size systems because of 

the high complexity of the symbolic computation. 

In order to avoid this problem, homotopy method 

has been used to compute real root of polynomial 

system in [14, 15]. 

Recently, Wu and Reid [16] propose a new 

approach, which is different from the critical point 

technique. In order to facilitate the description of 

this algorithm, we suppose polynomial system 𝑔 = 

{𝑔1, 𝑔2,...,}; the system has 𝑘 polynomials, 𝑛 

variables, and 𝑘 

Theorem 3 (see [17]). Let 𝑓(x) : R𝑛 → R𝑛 be a 

polynomial system, and x ∈ R𝑛 . Let IR be the set 

of real intervals, and IR𝑛 and IR𝑛×𝑛 be the set of 

real interval vectors and real interval matrices, 

respectively. Given X ∈ IR𝑛 with 0 ∈ X and 𝑀 ∈ 

IR𝑛×𝑛 satisfies ∇𝑓𝑖(x + X)⊆𝑀𝑖, for 𝑖 = 1, 2, . . . , 

𝑛. Denote by 𝐼𝑛 the identity matrix and assume 

 

where 𝐹x(x) is the Jacobian matrix of 𝐹 x  at x  

Then there is a unique x  ∈ 𝑋 such that   x     

Moreover, every matrix 𝑀 ∈ 𝑀is nonsingular, and 

the Jacobian matrix 𝐹x(x)is nonsingular 

There may exist some components which have no 

intersection with these random hyperplanes. Some 

points on these components must be the solutions 

of the Lagrange optimization problem: 

 

Here n is a random vector in R . The system has 

𝑛+𝑘 equations and 𝑛+𝑘 variables; thus we can find 

real points through solving system (3). 

Algorithm for Computing the Lyapunov 

Function 

In this section, we will present an algorithm for 

constructing the Lyapunov function. Our idea is to 

compute positive polynomial system which 

satisfies the definition of Lyapunov function first. 
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Then we solve the polynomial system deduced 

from the positive polynomial system using 

homotopy algorithm; at this step, we use the 

famous package hom4ps2 [18]. 

 Given a quadratic polynomial 𝐹(x), the following 

theorem gives a sufficient condition for the 

polynomial to be a Lyapunov function. 

Theorem 4 (see [3]). Let 𝐹(x) be a quadratic 

polynomial, for a given differential system; if 𝐹(x) 

satisfies the fact that 𝐻𝑒(𝐹)|x=0 is positive definite 

and 𝐻𝑒𝑠𝑠((𝑑/𝑑𝑡)𝐹)|x=0 is negative definite, then 

𝐹(x) is a Lyapunov function.  

By the theory of linear algebra, one knows that the 

symmetric matrix 𝐻𝑒(𝐹)|x=0 is positive definite if 

and only if all its eigenvalues are positive, and 

𝐻𝑒𝑠𝑠((𝑑/𝑑𝑡)𝐹)|x=0 is negative definite if and only 

if all its eigenvalues are negative. 

 

be a characteristic polynomial of a matrix; the 

following theorem deduced from the Descartes’ 

rule of signs [19] can be used to determine whether 

ℎ has only positive roots or not   

Theorem 5 (see [3]). Suppose all the roots of a real 

polynomial ℎ are real; then its roots are all positive 

if and only if for all 1 ≤ 𝑖 ≤ 𝑛,  −1 𝑖 𝑡𝑛−𝑖 > 0. 

 Combine Theorems 4 and 5, finding that the 

Lyapunov function in quadratic form can be 

converted into solving the real root of some 

positive polynomial system, denoting it by 

 

Suppose we have obtained the positive polynomial 

system as in (5), and denote the variable in the 

system by a. In order to obtain one value of a using 

numerical technique, we first convert the positive 

equation into equation. A simple ideal is to add 

new variable set x = (𝑥1, 𝑥2,...,), and construct the 

equation system as follows: 

 

If we find one real point (a, x) of system (6) such 

that there has nonzero element in x, then it is easy 

to see that the point a satisfies 

 

which means the differential system exists a 

Lyapunov function at the equilibrium. 

 Note that the number of variable is more than the 

number of equation in system (6); then the system 

𝑝𝑠 must be a positive dimensional polynomial 

system. 

 Recall the algorithm mentioned in Section 3; all of 

the algorithms obtain at least one real point in each 

connect component, and they use Theorem 3 to 

verify the existence of real root which deduces the 

low efficiency. However, in this paper, we only 

need one real point of system (6) to ensure the 

establishment of these inequalities in (7), so we 

verify the establishment of these inequalities using 

the residue of inequalities at the real part of every 

approximate real root of the system (6).  

In the following we propose an algorithm to 

determine if there exists a Lyapunov function at the 

equilibrium. 

 Algorithm 6. Input: a differential system as 

defined in (1) and a tolerance 𝜖. 

Output: a Lyapunov function or UNKNOW.  

(1) Construct the positive polynomial.  

(2) Convert the positive polynomial system into 

positive dimensional system defined in system (6).  

(3) We choose 𝑛 random point   x1,  x ,   , x𝑛) and 𝑛 

random vector k1, k2,..., k𝑛; then construct 𝑛 

hyperplane in R𝑛 through x 𝑖 with normal k𝑖 for 𝑖 = 

1, 2, . . . , 𝑛. Denote the set of this hyperplane by 

𝑝𝑠2. 

 (4) Let 𝑝𝑠 = {𝑝𝑠1, 𝑝𝑠2}, and solve the square 

system using homotopy continuation algorithm, 

denoting solution of 𝑝𝑠 by 𝑟𝑜𝑜𝑡𝑠.  

(5) for 𝑠 = 1 : 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑜𝑜𝑡𝑠)  

(a) if the norm of imaginary part of 𝑟𝑜𝑜𝑡𝑠{𝑠} is 

smaller than 𝜖, then substitute the real part of 

𝑟𝑜𝑜𝑡𝑠{𝑠} into {𝑔1,...,𝑔𝑛}, and denote the value by 

{V1, V2,..., V𝑛}. If V𝑖 > 0 for all 𝑖 ∈ {1, 2, . . . , 

𝑛}, then return the real part of 𝑟𝑜𝑜𝑡𝑠{𝑠} and break 

the program.  
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(6) End for.  

(7) Construct polynomial system 𝑝𝑠3   ∑𝑛 𝑖=1 

𝜆𝑖∇𝑓𝑖 = k, where 𝜆𝑖 is new variable and k are 

chosen from {k1,..., k𝑛} randomly. 

(8) Solve {𝑝𝑠1, 𝑝𝑠3} using homotopy continuation 

algorithm, denote its solution by 𝑟𝑜𝑜𝑡𝑠, and go to 

Step 4.  

(9) return UNKNOW.  

In the following, we present a simple example to 

illustrate our algorithm. 

 Example 7. This is an example from [20] 

 𝑥   −𝑥 + 2𝑦   3 −  𝑦4
  

𝑦   −𝑥 − 𝑦 + 𝑥𝑦     

 Let Lyapunov function (𝑥, 𝑦) = 𝑥2 + 𝑎𝑥𝑦 + 𝑏𝑦2 
. 

 Step 1. We obtain the positive polynomial using 

Theorems 4 and 5 as follows:  

[2𝑏 +   >  , −𝑎2 + 4𝑏 > 0,  

2𝑎 + 4𝑏 + 4 > 0, 4𝑎2 + 4𝑏  − 16𝑏 > 0] . 

Step 2. Convert system (9) into the following 

system: 

 

Step 3  Construct two hyperplanes {ℎ1, ℎ } in R6 

randomly, where 

ℎ1=0.09713178123584754𝑎+ 

0.04617139063115394𝑏 + 0.27692298496089𝑥1 + 

0.8234578283272926𝑥2 + 0.694828622975817𝑥3 

+ 0.3170994800608605𝑥4 + 0.9502220488383549,  

ℎ2 = 0.3815584570930084𝑎 + 

0.4387443596563982𝑏 + 0.03444608050290876𝑥1 

+ 0.7655167881490024𝑥2 + 

0.7951999011370632𝑥3 + 0.1868726045543786𝑥4 

+ 0.4897643957882311. 

Step 4. Compute the roots of the augmented system 

{𝑝𝑠1    , ℎ1    , ℎ     } using homotopy method, 

and we find the system has only 16 roots. 

Step 5. We obtain the first approximate real root of 

the system  

x   [−  4 76 461 156789, 4 633115716668555, 

3.356520733339377, 3.568739680591174, 

−4   918681533151 , −5 9 9 66734956268]. 

Substituting 𝑎   −  4 76 461 156789, 𝑏 = 

4.633115716668555 into the left of the positive 

polynomial in (9), we obtain the following result: 

[11.26623143, 12.73590291, 17.71725365, 

34.91943333]. 

This ensure the establishment of inequality in (9). 

Thus, 𝐹 (𝑥, 𝑦) = 𝑥2 + 4.633115716668555𝑦2
 − 

2.407604610156789𝑥y 

is a Lyapunov function. If the random hyperplanes 

{ℎ1, ℎ } are as follows: ℎ1   −3𝑎 − 𝑏 + 𝑥1 + 2𝑥  − 

2𝑥3 −  𝑥4 − 3, ℎ    3𝑎 − 3𝑏 − 𝑥1 −  𝑥2 + 𝑥3 + 

2𝑥4 −  , 

we find that polynomial system {ℎ1    , ℎ     , 𝑝𝑠 

= 0} has no real root; then we go to Step 7 in 

Algorithm 6 and obtain the following system: 

 

Solving the system {𝑝𝑠1 = 0, 𝑝𝑠3 = 0}, we find the 

first approximate real root and substitute the value 

of 𝑎 = 1.3053335232048229, 𝑏 = 

0.4314538107033688 into the left of the positive 

polynomial in (9) and we obtain the following 

result: 

 [2.862907621406738, 0.021919636011159, 

8.336482289223121, 0.656931019037197] . 

This ensures the establishment of inequality in (9). 

Thus, 𝐹 (𝑥, 𝑦) = 𝑥2 + 0.4314538107033688𝑦2 + 

1.3053335232048229𝑥y is a Lyapunov function. 

Conclusion 
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We describe a numerical approach to compute the 

Lyapunov function at equilibria for a differential 

system based on the real root computation of 

positive dimensional polynomial system. We divide 

the method into two parts because we only require 

one real root of the positive dimensional system, as 

determined by the connection between the 

Lyapunov function and the positive dimensional 

system. Instead of utilizing the interval Newton's 

technique to check for the existence of the real root 

at each step, we utilize the positive polynomial 

system's residue at the approximate real root 

instead. 
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